

N-CHANNEL Electrical Characteristics (T_J=25°C unless otherwise noted)

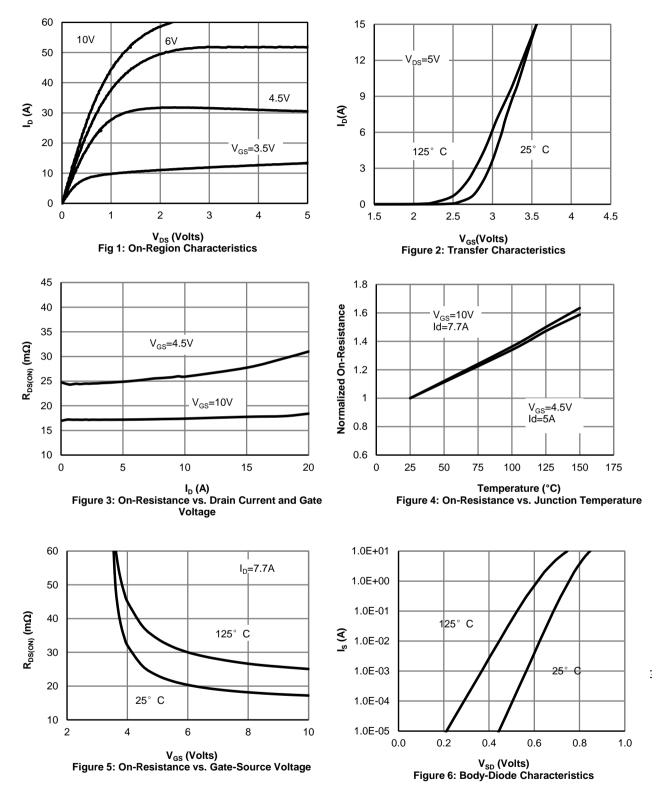
Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC P	PARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V	30			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =30V, V _{GS} =0V	C		1 5	μA
I _{GSS}	Gate-Body leakage current	$V_{DS}=0V, V_{GS}=\pm 20V$	<u> </u>		100	nA
V _{GS(th)}	Gate Threshold Voltage	V _{DS} =V _{GS} I _D =250μA	1.5	2.1	2.6	V
I _{D(ON)}	On state drain current	V _{GS} =10V, V _{DS} =5V	64			Α
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =10V, I _D =7.2A		17.7	24	
		T _J =125°	С	25	32	mΩ
		V _{GS} =4.5V, I _D =5A		24.8	36	mΩ
g _{FS}	Forward Transconductance	V _{DS} =5V, I _D =7.2A		20		S
V _{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.74	1	V
I _S	Maximum Body-Diode Continuous Curr	ent			2.5	А
I _{SM}	Pulsed Body-Diode Current ^B				64	А
DYNAMIC	C PARAMETERS					
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =15V, f=1MHz		373	448	pF
C _{oss}	Output Capacitance			67		pF
C _{rss}	Reverse Transfer Capacitance			41		pF
R _g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		1.8	2.8	Ω
SWITCHI	NG PARAMETERS					
Q _g (10V)	Total Gate Charge	V _{GS} =10V, V _{DS} =15V, I _D =7.2A		7.2	11	nC
Q _g (4.5V)	Total Gate Charge			3.5		nC
Q _{gs}	Gate Source Charge			1.3		nC
Q _{gd}	Gate Drain Charge			1.7		nC
t _{D(on)}	Turn-On DelayTime	V_{GS} =10V, V_{DS} =15V, R_L =2.1 Ω , R_{GEN} =3 Ω		4.5		ns
t _r	Turn-On Rise Time			2.7		ns
t _{D(off)}	Turn-Off DelayTime			14.9		ns
t _f	Turn-Off Fall Time			2.9		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =7.2A, dl/dt=100A/μs		10.5	12.6	ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =7.2A, dI/dt=100A/μs		4.5		nC

A: The value of R _{BJA} is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with T _A=25° C. The value in any given application depends on the user's specific board design. The current rating is based on the t \leq 10s thermal resistance rating. B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{0,JA}$ is the sum of the thermal impedence from junction to lead R $_{0,JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using <300 μ s pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A=25° C. The SOA curve provides a single pulse rating.


F.The power dissipation and current rating are based on the t \leqslant 10s thermal resistance rating.

APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms_and_conditions_of_sale

N-CHANNEL TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

N-CHANNEL TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

P-CHANNEL Electrical Characteristics (T₁=25°C unless otherwise noted)

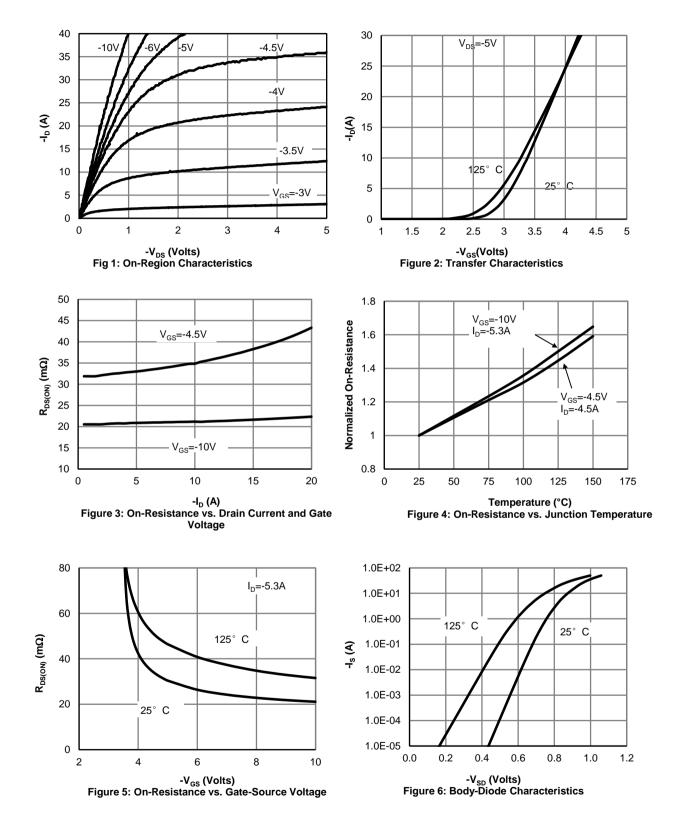
Symbol	Parameter	Conditions	Min	Тур	Max	Units			
STATIC PARAMETERS									
BV_{DSS}	Drain-Source Breakdown Voltage	I _D =-250μA, V _{GS} =0V	-30			V			
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =-30V, V _{GS} =0V			-1 -5	μΑ			
I _{GSS}	Gate-Body leakage current	V _{DS} =0V, V _{GS} =±20V			±100	nA			
V _{GS(th)}	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=-250 \mu A$	-1.3	-1.85	-2.4	V			
I _{D(ON)}	On state drain current	V _{GS} =-10V, V _{DS} =-5V	-40			А			
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =-10V, I _D =-5.3A T _J =125°C		23 31.5	32	mΩ			
		V_{GS} =-4.5V, I _D =-4.5A		33	55	mΩ			
9 _{FS}	Forward Transconductance	V_{DS} =-5V, I_{D} =-5.3A		19		S			
V _{SD}	Diode Forward Voltage	I _S =-1A,V _{GS} =0V		-0.8	-1	V			
I _S	Maximum Body-Diode Continuous Cur	rent			-3.5	A			
I _{SM}	Pulsed Body-Diode Current ^B				-40	A			
	PARAMETERS								
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =-15V, f=1MHz		760		pF			
C _{oss}	Output Capacitance			140		pF			
C _{rss}	Reverse Transfer Capacitance			95		pF			
R _g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		3.2	5	Ω			
SWITCHI	NG PARAMETERS								
Q _g (10V)	Total Gate Charge (10V)	-V _{GS} =-10V, V _{DS} =-15V, I _D =-5.3A		13.6	16	nC			
Q _g (4.5V)	Total Gate Charge (4.5V)			6.7		nC			
Q _{gs}	Gate Source Charge			2.5		nC			
Q_{gd}	Gate Drain Charge			3.2		nC			
t _{D(on)}	Turn-On DelayTime			8		ns			
t _r	Turn-On Rise Time	V_{GS} =-10V, V_{DS} =-15V, R _L =2.8 Ω ,		6		ns			
t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$		17		ns			
t _f	Turn-Off Fall Time	7		5		ns			
t _{rr}	Body Diode Reverse Recovery Time	I _F =-5.3A, dl/dt=100A/µs		15		ns			
Q _{rr}	Body Diode Reverse Recovery Charge	, I _F =-5.3A, dl/dt=100A/μs		9.7		nC			

A: The value of R_{BJA} is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with T_A=25° C. The value in any given application depends on the user's specific board design. The current rating is based on the t < 10s thermal resistance rating. B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\rm \theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\rm \theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max. E. These tests are performed with the device mounted on 1 in ² FR-4 board with 2oz. Copper, in a still air environment with

 $T_{A}=25^{\circ}$ C. The SOA curve provides a single pulse rating.


F.The current rating is based on the t \leq 10s thermal resistance rating.

APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms and conditions of sale

P-CHANNEL TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

P-CHANNEL TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

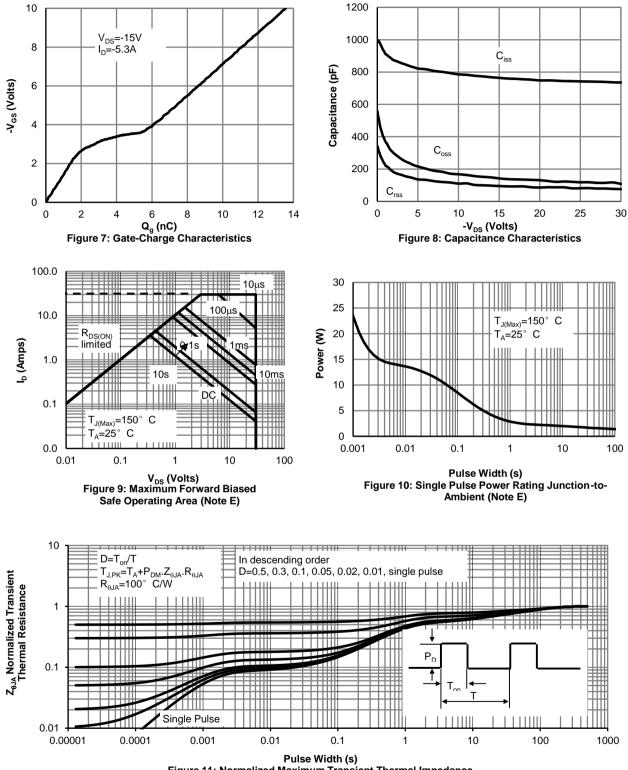


Figure 11: Normalized Maximum Transient Thermal Impedance